SAT数学部分中涉及到几何的考题是需要大家记忆一些相关的数学面积公式。所以大家在备考SAT数学考试的时候,一定要熟练应用面积公式,这样才能在遇到几何问题的时候,知道用什么样的方法来解答。
圆柱体:
表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高)
圆锥体:
表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高,
平面图形
周长C和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b-边长 C=2(a+b) S=ab
三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中
s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα
菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα
梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh
圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4
扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360)
弓形 l-弧长 S=r2/2·(πα/180-sinα)
b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2
r-半径 =r(l-b)/2 + bh/2
α-圆心角的度数 ≈2bh/3
圆环 R-外圆半径 S=π(R2-r2)
r-内圆半径 =π(D2-d2)/4
D-外圆直径
d-内圆直径
椭圆 D-长轴 S=πDd/4
d-短轴
二维图形
下面是一些二维图形的周长与面积公式。
圆:
半径= r 直径d=2r
圆周长= 2πr =πd
面积=πr2 (π=3.1415926…….)
椭圆:
面积=πab
a与b分别代表短轴与长轴的一半。
矩形:
面积= ab
周长= 2a+2b
平行四边形(parallelogram):
面积= bh = ab sinα
周长= 2a+2b
梯形:
面积= 1/2h (a+b)
周长= a+b+h (secα+secβ)
正n边形:
面积= 1/2nb2 cot (180°/n)
周长= nb
四边形(i):
面积= 1/2ab sinα
四边形(ii):
面积= 1/2 (h1+h2) b+ah1+ch2